Comparing AWS, Azure, and Google Cloud in 2025
Core Services Comparison
Service Category | AWS | Azure | Google Cloud Platform (GCP) |
---|---|---|---|
Compute | EC2, Lambda, ECS, EKS, Fargate | VMs, Azure Functions, AKS, App Service | Compute Engine, Cloud Functions, GKE |
Storage | S3, EBS, EFS, Glacier | Blob Storage, Disk Storage, File Storage | Cloud Storage, Persistent Disk, Filestore |
Database | RDS, DynamoDB, Aurora, Redshift | SQL DB, Cosmos DB, MySQL, PostgreSQL | Cloud SQL, Spanner, Bigtable, BigQuery |
Networking | VPC, Route 53, ELB, Direct Connect | VNets, Load Balancer, ExpressRoute | VPC, Cloud Load Balancing, Interconnect |
AI/ML | SageMaker, Rekognition, Comprehend | Azure ML, Cognitive Services | Vertex AI, Vision API, AutoML |
DevOps | CodePipeline, CodeBuild, CloudWatch | DevOps Projects, Azure Monitor, Pipelines | Cloud Build, Cloud Monitoring, Cloud Deploy |
Serverless | Lambda, Step Functions | Azure Functions, Logic Apps | Cloud Functions, Cloud Run |
Global Infrastructure
Attribute | AWS | Azure | GCP |
---|---|---|---|
Regions (2025) | 34 | 65 | 44 |
Availability Zones | 105+ | 200+ | 134+ |
Edge Locations | 400+ | 300+ | 200+ |
Notable Strengths | Mature global presence | Strong in hybrid/government | Fast expansion in APAC/EMEA |
Compute Services: Pricing and Performance
-
AWS EC2:
Offers a wide range of instance types (general, compute, memory, storage optimized). Spot and Savings Plans provide significant discounts.
bash
# Launching an EC2 instance (CLI)
aws ec2 run-instances --image-id ami-123456 --instance-type t3.micro --key-name MyKey -
Azure VMs:
Comparable instance types. Azure Hybrid Benefit allows use of on-premise Windows licenses, reducing costs for enterprise workloads.
azurecli
# Create a VM
az vm create --resource-group MyGroup --name MyVM --image UbuntuLTS --admin-username azureuser -
GCP Compute Engine:
Custom machine types offer granular control over vCPU and memory, minimizing over-provisioning. Sustained use discounts apply automatically.
bash
# Create a VM instance
gcloud compute instances create my-vm --machine-type=e2-custom-4-8192 --image-family=debian-11
Provider | Entry Price (1 vCPU/2GB RAM, 2025 est.) | Per-Second Billing | Custom Machine Types | Spot/Preemptible Instances |
---|---|---|---|---|
AWS | $8.50/mo (t3.small) | Yes | No | Yes |
Azure | $8.80/mo (B1s) | Yes | No | Yes |
GCP | $7.90/mo (e2-custom-1-2048) | Yes | Yes | Yes |
Storage Services: Features and Pricing
- Object Storage
- AWS S3: Industry standard, robust ecosystem. Intelligent-Tiering for automatic cost optimization.
- Azure Blob Storage: Strong integration with Microsoft tools. Tiers: Hot, Cool, Archive.
- GCP Cloud Storage: Uniform API, dual-region buckets, and Turbo Replication.
Provider | 1TB Standard Storage (per month) | Archive Tier Available | Lifecycle Management | Cross-region Replication |
---|---|---|---|---|
AWS | $23.00 | Yes | Yes | Yes |
Azure | $23.50 | Yes | Yes | Yes |
GCP | $22.80 | Yes | Yes | Yes |
Managed Kubernetes: Feature Comparison
Feature | AWS EKS | Azure AKS | Google Kubernetes Engine (GKE) |
---|---|---|---|
Auto-upgrades | Yes | Yes | Yes |
Multi-cluster support | Partial | Yes | Yes |
Integrated Monitoring | CloudWatch | Azure Monitor | Cloud Monitoring |
Native CI/CD | CodePipeline/CodeBuild | Azure DevOps | Cloud Build |
Pricing (2025) | $0.10/hr/cluster | Free control plane | Free control plane |
Autoscaling | Yes (Karpenter support) | Yes | Yes (best-in-class) |
AI/ML Services: Practical Examples
-
AWS SageMaker: End-to-end ML lifecycle with built-in algorithms and notebook instances.
python
import sagemaker
session = sagemaker.Session()
estimator = sagemaker.estimator.Estimator(
image_uri='123456789012.dkr.ecr.us-west-2.amazonaws.com/my-image:latest',
role='arn:aws:iam::123456789012:role/SageMakerRole',
instance_count=1,
instance_type='ml.m5.large'
)
estimator.fit('s3://my-bucket/data/') -
Azure Machine Learning: Designer drag-and-drop and code-first experiences.
python
from azureml.core import Workspace, Dataset
ws = Workspace.from_config()
dataset = Dataset.get_by_name(ws, name='my-dataset') -
Google Vertex AI: Unified platform for data labeling, training, and deployment. AutoML and custom models.
python
from google.cloud import aiplatform
aiplatform.init(project='my-project', location='us-central1')
model = aiplatform.Model.upload(display_name='my-model', artifact_uri='gs://my-bucket/model/')
Hybrid and Multi-cloud Capabilities
Feature | AWS | Azure | GCP |
---|---|---|---|
Hybrid Infrastructure | Outposts, ECS Anywhere, EKS Anywhere | Azure Arc, Stack HCI, ExpressRoute | Anthos, Interconnect, Dual Run |
On-premise Integration | Strong, but AWS-focused | Best for Windows/VMware workloads | Kubernetes-based, multi-cloud |
Multi-cloud Management | Basic; relies on partners | Arc supports AWS/Azure/GCP | Anthos natively supports all |
Security, Compliance, and Identity
- AWS: IAM, Organizations, KMS, Macie. Compliance: FedRAMP, HIPAA, GDPR, C5.
- Azure: Active Directory, RBAC, Key Vault, Sentinel. Compliance: Government, Financial, Healthcare.
- GCP: IAM, Cloud Identity, Security Command Center, DLP API. Compliance: PCI DSS, ISO 27001, GDPR.
Security Feature | AWS | Azure | GCP |
---|---|---|---|
Identity Federation | Yes | Yes | Yes |
Native SIEM | CloudWatch | Sentinel | Security Command Center |
Key Management | KMS | Key Vault | KMS |
DLP | Macie | Purview | DLP API |
Serverless Offerings
Service | AWS Lambda | Azure Functions | Google Cloud Functions |
---|---|---|---|
Languages | Node, Python, Java, Go, .NET | Node, Python, C#, Java, PowerShell | Node, Python, Go, Java, .NET |
Max Timeout | 15 mins | 60 mins | 60 mins |
Max Memory | 10 GB | 4 GB | 16 GB |
Cold Start | Fastest with Provisioned Concurrency | Fast with Premium Plan | Fast with Gen 2 runtime |
Event Sources | 200+ | 100+ | 80+ |
Example: Deploying a basic function (GCP)
gcloud functions deploy hello_world --runtime python310 --trigger-http --allow-unauthenticated
Pricing and Cost Management
- AWS: AWS Cost Explorer, Budgets, Savings Plans.
- Azure: Cost Management + Billing, Azure Advisor, Reservations.
- GCP: Billing Reports, Cost Tables, Committed Use Discounts (CUDs).
Cost Optimization Tool | AWS | Azure | GCP |
---|---|---|---|
Reserved Pricing/Commitments | Savings Plans, RIs | Reserved Instances | CUDs, SUDs |
Autoscaling | Yes | Yes | Yes |
Recommendations | Yes (Trusted Advisor) | Yes (Advisor) | Yes (Recommender) |
DevOps and CI/CD Integrations
- AWS: CodePipeline, CodeBuild, CodeDeploy, native GitHub Actions integrations.
- Azure: Azure DevOps, Pipelines, GitHub Actions (deepest integration).
- GCP: Cloud Build, Cloud Deploy, Cloud Source Repositories.
Provider | Native CI/CD Pipeline | Third-party Integration | Infrastructure as Code |
---|---|---|---|
AWS | Yes | Jenkins, GitHub, GitLab | CloudFormation, CDK, Terraform |
Azure | Yes | Jenkins, GitHub | ARM, Bicep, Terraform |
GCP | Yes | Jenkins, GitHub, GitLab | Deployment Manager, Terraform |
Summary Table: Platform Strengths (2025)
Use Case | AWS | Azure | GCP |
---|---|---|---|
Enterprise/Legacy Integration | Good, especially Linux | Best for Microsoft workloads | Good with hybrid Kubernetes |
Startups/Cost Optimization | Good | Good | Best (sustained/custom pricing) |
AI/ML | Advanced, broad ecosystem | Good, strong Microsoft tie-in | Best for AutoML, data analytics |
Multi-cloud/Kubernetes | Improving | Good | Best (Anthos, GKE) |
Global Reach | Leading | Fastest expansion | Catching up |
Compliance | Broadest | Deepest for gov/finance | Strong, with Google backbone |
0 thoughts on “Comparing AWS, Azure, and Google Cloud in 2025”