Comparing AWS, Azure, and Google Cloud in 2025

Comparing AWS, Azure, and Google Cloud in 2025
24 Jun

Core Services Comparison

Service Category AWS Azure Google Cloud Platform (GCP)
Compute EC2, Lambda, ECS, EKS, Fargate VMs, Azure Functions, AKS, App Service Compute Engine, Cloud Functions, GKE
Storage S3, EBS, EFS, Glacier Blob Storage, Disk Storage, File Storage Cloud Storage, Persistent Disk, Filestore
Database RDS, DynamoDB, Aurora, Redshift SQL DB, Cosmos DB, MySQL, PostgreSQL Cloud SQL, Spanner, Bigtable, BigQuery
Networking VPC, Route 53, ELB, Direct Connect VNets, Load Balancer, ExpressRoute VPC, Cloud Load Balancing, Interconnect
AI/ML SageMaker, Rekognition, Comprehend Azure ML, Cognitive Services Vertex AI, Vision API, AutoML
DevOps CodePipeline, CodeBuild, CloudWatch DevOps Projects, Azure Monitor, Pipelines Cloud Build, Cloud Monitoring, Cloud Deploy
Serverless Lambda, Step Functions Azure Functions, Logic Apps Cloud Functions, Cloud Run

Global Infrastructure

Attribute AWS Azure GCP
Regions (2025) 34 65 44
Availability Zones 105+ 200+ 134+
Edge Locations 400+ 300+ 200+
Notable Strengths Mature global presence Strong in hybrid/government Fast expansion in APAC/EMEA

Compute Services: Pricing and Performance

  • AWS EC2:
    Offers a wide range of instance types (general, compute, memory, storage optimized). Spot and Savings Plans provide significant discounts.
    bash
    # Launching an EC2 instance (CLI)
    aws ec2 run-instances --image-id ami-123456 --instance-type t3.micro --key-name MyKey

  • Azure VMs:
    Comparable instance types. Azure Hybrid Benefit allows use of on-premise Windows licenses, reducing costs for enterprise workloads.
    azurecli
    # Create a VM
    az vm create --resource-group MyGroup --name MyVM --image UbuntuLTS --admin-username azureuser

  • GCP Compute Engine:
    Custom machine types offer granular control over vCPU and memory, minimizing over-provisioning. Sustained use discounts apply automatically.
    bash
    # Create a VM instance
    gcloud compute instances create my-vm --machine-type=e2-custom-4-8192 --image-family=debian-11

Provider Entry Price (1 vCPU/2GB RAM, 2025 est.) Per-Second Billing Custom Machine Types Spot/Preemptible Instances
AWS $8.50/mo (t3.small) Yes No Yes
Azure $8.80/mo (B1s) Yes No Yes
GCP $7.90/mo (e2-custom-1-2048) Yes Yes Yes

Storage Services: Features and Pricing

  • Object Storage
  • AWS S3: Industry standard, robust ecosystem. Intelligent-Tiering for automatic cost optimization.
  • Azure Blob Storage: Strong integration with Microsoft tools. Tiers: Hot, Cool, Archive.
  • GCP Cloud Storage: Uniform API, dual-region buckets, and Turbo Replication.
Provider 1TB Standard Storage (per month) Archive Tier Available Lifecycle Management Cross-region Replication
AWS $23.00 Yes Yes Yes
Azure $23.50 Yes Yes Yes
GCP $22.80 Yes Yes Yes

Managed Kubernetes: Feature Comparison

Feature AWS EKS Azure AKS Google Kubernetes Engine (GKE)
Auto-upgrades Yes Yes Yes
Multi-cluster support Partial Yes Yes
Integrated Monitoring CloudWatch Azure Monitor Cloud Monitoring
Native CI/CD CodePipeline/CodeBuild Azure DevOps Cloud Build
Pricing (2025) $0.10/hr/cluster Free control plane Free control plane
Autoscaling Yes (Karpenter support) Yes Yes (best-in-class)

AI/ML Services: Practical Examples

  • AWS SageMaker: End-to-end ML lifecycle with built-in algorithms and notebook instances.
    python
    import sagemaker
    session = sagemaker.Session()
    estimator = sagemaker.estimator.Estimator(
    image_uri='123456789012.dkr.ecr.us-west-2.amazonaws.com/my-image:latest',
    role='arn:aws:iam::123456789012:role/SageMakerRole',
    instance_count=1,
    instance_type='ml.m5.large'
    )
    estimator.fit('s3://my-bucket/data/')

  • Azure Machine Learning: Designer drag-and-drop and code-first experiences.
    python
    from azureml.core import Workspace, Dataset
    ws = Workspace.from_config()
    dataset = Dataset.get_by_name(ws, name='my-dataset')

  • Google Vertex AI: Unified platform for data labeling, training, and deployment. AutoML and custom models.
    python
    from google.cloud import aiplatform
    aiplatform.init(project='my-project', location='us-central1')
    model = aiplatform.Model.upload(display_name='my-model', artifact_uri='gs://my-bucket/model/')


Hybrid and Multi-cloud Capabilities

Feature AWS Azure GCP
Hybrid Infrastructure Outposts, ECS Anywhere, EKS Anywhere Azure Arc, Stack HCI, ExpressRoute Anthos, Interconnect, Dual Run
On-premise Integration Strong, but AWS-focused Best for Windows/VMware workloads Kubernetes-based, multi-cloud
Multi-cloud Management Basic; relies on partners Arc supports AWS/Azure/GCP Anthos natively supports all

Security, Compliance, and Identity

  • AWS: IAM, Organizations, KMS, Macie. Compliance: FedRAMP, HIPAA, GDPR, C5.
  • Azure: Active Directory, RBAC, Key Vault, Sentinel. Compliance: Government, Financial, Healthcare.
  • GCP: IAM, Cloud Identity, Security Command Center, DLP API. Compliance: PCI DSS, ISO 27001, GDPR.
Security Feature AWS Azure GCP
Identity Federation Yes Yes Yes
Native SIEM CloudWatch Sentinel Security Command Center
Key Management KMS Key Vault KMS
DLP Macie Purview DLP API

Serverless Offerings

Service AWS Lambda Azure Functions Google Cloud Functions
Languages Node, Python, Java, Go, .NET Node, Python, C#, Java, PowerShell Node, Python, Go, Java, .NET
Max Timeout 15 mins 60 mins 60 mins
Max Memory 10 GB 4 GB 16 GB
Cold Start Fastest with Provisioned Concurrency Fast with Premium Plan Fast with Gen 2 runtime
Event Sources 200+ 100+ 80+

Example: Deploying a basic function (GCP)

gcloud functions deploy hello_world --runtime python310 --trigger-http --allow-unauthenticated

Pricing and Cost Management

  • AWS: AWS Cost Explorer, Budgets, Savings Plans.
  • Azure: Cost Management + Billing, Azure Advisor, Reservations.
  • GCP: Billing Reports, Cost Tables, Committed Use Discounts (CUDs).
Cost Optimization Tool AWS Azure GCP
Reserved Pricing/Commitments Savings Plans, RIs Reserved Instances CUDs, SUDs
Autoscaling Yes Yes Yes
Recommendations Yes (Trusted Advisor) Yes (Advisor) Yes (Recommender)

DevOps and CI/CD Integrations

  • AWS: CodePipeline, CodeBuild, CodeDeploy, native GitHub Actions integrations.
  • Azure: Azure DevOps, Pipelines, GitHub Actions (deepest integration).
  • GCP: Cloud Build, Cloud Deploy, Cloud Source Repositories.
Provider Native CI/CD Pipeline Third-party Integration Infrastructure as Code
AWS Yes Jenkins, GitHub, GitLab CloudFormation, CDK, Terraform
Azure Yes Jenkins, GitHub ARM, Bicep, Terraform
GCP Yes Jenkins, GitHub, GitLab Deployment Manager, Terraform

Summary Table: Platform Strengths (2025)

Use Case AWS Azure GCP
Enterprise/Legacy Integration Good, especially Linux Best for Microsoft workloads Good with hybrid Kubernetes
Startups/Cost Optimization Good Good Best (sustained/custom pricing)
AI/ML Advanced, broad ecosystem Good, strong Microsoft tie-in Best for AutoML, data analytics
Multi-cloud/Kubernetes Improving Good Best (Anthos, GKE)
Global Reach Leading Fastest expansion Catching up
Compliance Broadest Deepest for gov/finance Strong, with Google backbone

0 thoughts on “Comparing AWS, Azure, and Google Cloud in 2025

Leave a Reply

Your email address will not be published. Required fields are marked *

Looking for the best web design
solutions?